EasyByte
Article

Automating Fraud Detection: How Neural Networks Protect Banks and Retail from Financial Losses

12 февраля 2026 ~5 min
Automating Fraud Detection: How Neural Networks Protect Banks and Retail from Financial Losses

Learn how neural networks detect financial fraud and help banks and retailers protect customers and reduce losses.

Published 12 февраля 2026
Category EasyByte Blog
Reading time ~5 min

Neural Networks Against Fraudsters: A New Era of Security in Banks and Retail

Every minute, more than a million transactions occur worldwide—from buying a cup of coffee to international transfers worth millions of dollars. But with the convenience of online payments comes an increase in the scale of financial fraud.

According to the latest  глобальному отчёту Trans Union о мошенничестве, companies worldwide lose approximately 8% of their revenue annually due to fraudulent transactions—equivalent to over $500 billion in global losses. The problem is particularly acute in the banking and retail sectors, where the number of cyberattacks has increased by almost a third in the last two years.

That's why more and more organizations are implementing neural network models for automatic fraud detection—systems capable of analyzing millions of transactions in real time, detecting anomalies, and preventing losses before money leaves an account.

In this article, we'll break down how these models work, why they outperform traditional methods, and how companies like JPMorgan Chase, Amazon, and Sberbank are already using AI to protect customers and businesses.


Why is financial fraud growing and how to fight it?

In the digital economy, fraudsters are gaining more and more opportunities. Phishing, social engineering, fake websites, account hacking, illegal transactions—this is not an exhaustive list of threats that banks and retailers face.

Traditional methods of combating fraud—manual checks and simple filters—are no longer coping with the volume and complexity of attacks. Today, fraudsters use sophisticated schemes, masking their actions as those of ordinary users.

Именно поэтому компании, желающие защитить свои активы и репутацию, обращаются к искусственному интеллекту и нейросетям.


Как работают нейросетевые модели для выявления мошенничества?

Нейросети и модели машинного обучения работают на основе больших данных, обучаясь распознавать мошеннические паттерны и аномалии в реальном времени. Преимущество таких систем в том, что они постоянно совершенствуются, выявляя даже новые и нестандартные схемы мошенничества.

Вот ключевые принципы работы нейросетей:

1. Анализ поведения пользователей (Behavioral Analytics)

Нейросети изучают «нормальное» поведение клиентов — регулярные суммы, время проведения операций, типичные места покупок. Любое значительное отклонение (например, необычная сумма, транзакция в непривычной стране или магазине) мгновенно вызывает подозрение и сигнализирует о возможном мошенничестве.

2. Выявление аномалий (Anomaly Detection)

Нейросети моментально замечают подозрительные паттерны — например, серию небольших переводов за короткий промежуток времени или необычное количество транзакций по одному аккаунту.

3. Обучение на исторических данных (Supervised Learning)

Модели обучаются на прошлых случаях мошенничества, запоминая тысячи признаков и контекстов атак. В результате они способны обнаруживать аналогичные схемы в будущем.

4. Адаптивное обучение (Adaptive Learning)

Мошенники постоянно совершенствуют свои методы. Поэтому нейросети регулярно дообучаются на новых данных, оставаясь эффективными и способными реагировать даже на неизвестные ранее угрозы.


Реальные кейсы: как нейросети спасают миллионы долларов

Давайте рассмотрим успешные примеры внедрения нейросетевых систем в ведущих банках и ритейл-компаниях.

Кейс №1: Банк JPMorgan Chase

 JPMorgan applies neural network technologies to analyze 1 billion transactions per day. Thanks to a deep learning model, losses from fraud have been reduced by 90%. At the same time, the number of false positives has been reduced by half, increasing customer trust in the bank.

Case #2: Retailer Amazon

 Amazon uses AI and neural networks to monitor customer behavior and detect suspicious transactions. Models automatically block fraudulent purchases, preventing losses and protecting sellers and buyers.

Case #3: Sberbank

 Российский Сбербанк внедрил нейросетевую систему, которая за доли секунды анализирует поведение клиентов. Эффективность распознавания мошенничества достигла 95%, а экономический эффект от внедрения системы превысил миллиарды рублей за год.


Почему нейросетевые модели эффективнее традиционных методов?

Традиционные подходы выявления мошенничества устаревают, не справляясь с современными схемами преступников. Нейросети превосходят классические подходы по следующим причинам:

  • Высокая точность: Нейросети обучаются на больших объёмах данных, выявляя даже малейшие признаки мошенничества.
  • Speed of processing: Transaction analysis happens instantly, allowing for immediate blocking of suspicious operations.
  • Adaptability: Systems are constantly improving, learning from new fraud schemes.
  • Minimum false positives: Reducing the number of erroneous transaction blocks improves the customer experience and reduces operating costs.

What are the downsides of automated fraud detection?

Despite the advantages, neural network models require careful preparation and have limitations:

  • High data requirements: The more data, the more effective the model. Insufficient or poor-quality data reduces accuracy.
  • Continuous maintenance: Models require regular support, retraining, and monitoring by qualified specialists.
  • Need for fine-tuning: To minimize false positives, neural networks require tuning and regular calibration.

How to implement neural network models in your business?

Successful implementation of neural network solutions for fraud detection involves several stages:

  1. Audit and data collection: 
    Assessment of current data and preparation of a high-quality dataset.
  2. Model selection and training: Selection of the optimal architecture and training of the neural network on historical examples.
  3. Pilot testing: Testing in real conditions with subsequent calibration.
  4. Full-scale implementation: Integration into existing infrastructure and business processes.
  5. Continuous monitoring and support: Regular retraining of the model on new data and adaptation to new threats.

Conclusion: why the future is with automated fraud detection?

Neural network models not only help reduce losses from fraud, but also strengthen the reputation of the business. Customers trust companies that are able to protect their money and data.


📌FAQ: AI-powered Fraud Detection

Question: Why are banks moving from manual checks to neural network models?

Answer: Because the volume of transactions has long exceeded human capabilities. Neural networks analyze millions of operations per second and identify suspicious patterns that are not obvious during manual checks. This increases response speed and reduces the risk of financial losses.


Question: What distinguishes automated fraud detection from traditional anti-fraud systems?

Answer: The main difference — self-learning. Classic systems operate according to rigidly defined rules ("if-then"), while neural networks adapt to new fraud schemes. This is especially important when criminals use AI to bypass standard filters.


Question: How accurate are neural network anti-fraud models?

Answer: Modern machine learning models achieve fraud detection accuracy up to 95–98%, while reducing the number of false positives by 1.5–2 times. However, the result depends on the quality of data and regular retraining of the system.


Question: Can such a system be implemented in retail or e-commerce?

Answer: Yes. Retail actively uses neural network solutions for monitoring payments, returns, and customer behavior. The model is trained on transaction patterns and detects suspicious activity in real time — from repeated returns to anomalous orders.


Question: How much does it cost to implement a neural network for fraud detection?

Answer: The cost depends on the scale of the business, the amount of data, and integration with the current IT infrastructure.
To get an accurate estimate, you can use
  use the cost calculator for EasyByte neural network
or
→ schedule a free consultation with an EasyByte expert


Question: How quickly can such a system be implemented?

Answer: The pilot version of the model is usually implemented within 1–3 months. After testing and calibration, the solution is scaled to all company processes. EasyByte helps you go through this path — from data audit to integration of a ready-made neural network.

 

Have a challenge? Let's do better than in the case studies

Get a plan and estimate within 24 hours.